
www.manaraa.com

1Data Structures and Genetic ProgrammingW. B. LangdonDept. of Computer Science,University College London1 IntroductionMuch published work on genetic programming evolves functions without \side-e�ects" tolearn patterns in test data, once produced they can be used to make predictions regardingnew data. In contrast human written programs often make extensive and explicit useof memory. Indeed memory in some form is required for a programming system to beTuring Complete. In both normal and genetic programming considerable bene�ts havebeen found in adopting a \structured approach". For example, Koza [Koz94] has shownthe introduction of evolvable code modules (ADFs) can greatly reduce the e�ort requiredfor GP to reach a solution.Teller [Tel94] has shown that the introduction of indexed memory into genetic pro-gramming makes it Turing Complete. This work builds on Teller's and considers theintroduction of data structures within GP. The expectation is that the use of data struc-tures will prove as useful to GP as code structuring has already been shown to be. Sofar the important result is that GP can evolve simple data structures, such as stacks andqueues [Lan95]. This abstract reports the successful evolution a list data structure, com-pares the use of Pareto selection and demes and describes the directed choice of crossoverpoints.2 Evolving a listAho et al's [AHU87] de�nition of a list gives ten list operations (Makenull, Retrieve, In-sert, Delete, End, First, Next, Previous, Locate and Printlist). In the GP each operationis implemented as a separate evolving tree. Each member of the GP population containsall ten operations, plus ADFs. The �rst ADF takes two arguments, an integer and afunction. The function is another ADF, each calling operation passes its own function.The four simpler operations (End, First, Next and Previous) can be called by the othersand the ADFs (n.b. recursive calls are forbidden).The functions and terminals used the stack and the queue were augmented with:looping constructs, a means to pass functions to ADFs, a function to swap memorylocations and a print function.Each of the ten operations represents a separate objective. The GP's task is to simul-taneously optimize all of them. The value of each objective (i.e. the �tness) is determinedby running each individual on 21 �xed test sequences containing 538 operations. Testsare grouped into subsequences which call several operations and cross check the valuesreturned by them. If the checks are passed the score for each operation called in thesubsequence is incremented. Only if all the checks are passed is the next subsequencestarted.



www.manaraa.com

Submitted to ICGA-95 GP workshop, 19 July 1995 2In addition to the ten per operation scores, an individual's �tness contains penaltiesfor excessive CPU and memory usage. Pareto multi-objective tournament selection withniching is used to select individuals for reproduction and removal from the population.Like the stack and the queue, solutions have been found which not only pass all thetests, but subsequent analysis shows to be correct and general, i.e. given su�cient mem-ory would correctly implement a list of any �nite size. On continuing the evolutionaryprocess, solutions with reduced CPU cost were found. The three data structures, stack,queue and list and the relative di�culty of evolving them using GP, including their �tnessfunctions, will be discussed.makenul = (PROG2 (Set Aux1 (PROG2 (SUB 1 End) (Set Aux1 0))) 1)retriev = (read arg1)insert = (write (SUB (Next aux1) (adf1 ARG2)) (write ARG2 ARG1))delete = (SUB (Prev aux1) (adf1 ARG1))end = (ADD aux1 1)first = 1next = (ADD 1 arg1)prev = (SUB (ADD arg1 arg1) (ADD arg1 1))locate = (adf1 First)prtlist = (adf1 1)adf1 = (SUB (forwhile (ADD 0 arg1) (forwhile aux1 aux1 0) (FUNC i0)) (ADD 0 0))ins adf = (swap arg1 max)del adf = (swap (Next arg1) arg1)loc adf = (ADD (SUB (read arg1) (ADD ARG1 arg1)) arg1)prt adf = (ADD arg1 (print (read arg1)))Evolved List3 Pareto Optimality v. DemesWhere a Pareto tournament fails to �nd a single non-dominated winner, it is agumentedby comparing the remaining non-dominated candidates with a random sample (of up to81) other members of the population. The one which is dominated by (or has the samescore as) the least number of others is chosen.Comparison with the rest of the population introduces a selection pressure to bedi�erent and spreads the population out over �tness space. Typically, in a populationof 10,000, there are a few hundred di�erent non-dominated �tness values (or niches) inthe population. In contrast, when this spreading presure is absent even small demes areunable to prevent the population converging. Typically the number of occupied nichesfalls below 20 within the �rst 10 generations.Demes have the potential advantage of breading similar programs with each other.The implementation of �tness niching used to evolve the list has exactly the oppositee�ect, most crossovers are between programs with di�erent �tness'. It is not clear whichis to be preferred, however mate selection could be designed to enhance the chance ofbreeding like with like.4 CPU PenaltyPrograms whose �tness testing requires more than a threshold number of instructionsare penalized. This scheme has the anticipated bene�t of curbing program run time andalso causes the evolution of near parsimonious code. This is in dramatic contrast to the



www.manaraa.com

Submitted to ICGA-95 GP workshop, 19 July 1995 3queue (which had no CPU or space penalties) where programs rapidly grew to the limitof the available space. However the threshold has to be chosen with care to avoid overpenalizing constructs (like loops) which have a high CPU cost but appear not to helpachieve higher �tness levels until later in the evolutionary process.5 Directed CrossoverIn 90% of crossovers the parents �tness and execution path is used to bias the choice ofcrossover location. The location is chosen to avoid disrupting code that is working, toavoid wasting crossovers by changing code that is never executed and is biased in favourof changing code that appears to be performing poorly. This appears to be bene�cialbut it is too early to draw �rm conclusions.6 Implementation IssuesPartial scores for each test sequence are saved. Where the location of the crossover pointindicates that a child's score on a test sequence must be identical to its parent, the testsare not run, instead the partial score is used. This produces about a 50% reduction inelapse run time, however at the cost of increasing the memory required by � 30%.Where adfs or operations do not to have side-e�ects, there is no need to evaluate themmore than once for each input value. Using caches to avoid such repeated evaluationreduces runtime by � 50%.7 Further WorkHaving evolved three data structures using genetic programming, it is intended to inves-tigate solving a number of simple problems which require the use of memory to see howhelpful data structures are.Whilst this work has shown �tness niches, CPU penalties and directed choice ofcrossover points were e�ective when evolving a list, further work is required to demon-strate to what extent they are generally useful. We are also investigating simple theo-retical models of genetic programming.References[AHU87] A V Aho, J E Hopcroft, and J D Ullman. Data Structures and Algorithms.Addison-Wesley, 1987.[Koz94] John R. Koza. Genetic Programming II: Automatic Discovery of ReusablePrograms. MIT Press, Cambridge Massachusetts, May 1994.[Lan95] W. B. Langdon. Evolving data structures using genetic programming. InL. Eshelman, editor, Genetic Algorithms: Proceedings of the Sixth Interna-tional Conference (ICGA95), San Francisco, CA., USA, July 1995. MorganKaufmann. To appear.



www.manaraa.com

Submitted to ICGA-95 GP workshop, 19 July 1995 4[Tel94] Astro Teller. Turing completeness in the language of genetic programmingwith indexed memory. In Proceedings of the 1994 IEEE World Congress onComputational Intelligence, volume 1. IEEE Press, Jun 1994.


